Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

»ó¾Ç ÀüÄ¡ºÎ ÈÄ¹æ °ßÀÎ ½Ã À̵¿ ¾ç»ó°ú ÀÀ·Â ºÐÆ÷¿¡ °üÇÑ »ïÂ÷¿ø À¯ÇÑ¿ä¼Ò¹ýÀû ¿¬±¸

The pattern of movement and stress distribution during retraction of maxillary incisors using a 3-D finite element method

Korean Journal of Orthodontics 2007³â 37±Ç 2È£ p.98 ~ 113
Á¤¾ÖÁø, À̼öÇà, °­¼º¼ö, ÃÖÈñÀÎ, Á¶ÁøÇü, ±è»óö, ±è¿î¼ö,
¼Ò¼Ó »ó¼¼Á¤º¸
Á¤¾ÖÁø ( Chung Ae-Jin ) - ¿ø±¤´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú±³Á¤Çб³½Ç
À̼öÇà ( Lee Soo-Haeng ) - ¿ø±¤´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú±³Á¤Çб³½Ç
°­¼º¼ö ( Kang Seong-Soo ) - ¿ø±¤´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú±³Á¤Çб³½Ç
ÃÖÈñÀΠ( Choi Hee-In ) - ¿ø±¤´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú±³Á¤Çб³½Ç
Á¶ÁøÇü ( Cho Jin-Hyung ) - ¿ø±¤´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú±³Á¤Çб³½Ç
±è»óö ( Kim Sang-Cheol ) - ¿ø±¤´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú±³Á¤Çб³½Ç
±è¿î¼ö ( Kim Un-Su ) - ¿ø±¤´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú±³Á¤Çб³½Ç

Abstract

»ó¾Ç ÀüÄ¡ºÎ ÈÄ¹æ °ßÀÎ ½ÃÀÇ À̵¿ ¾ç»ó ¹× ÀÀ·Â ºÐÆ÷¸¦ °ÇÁ¶ µÎ°³°ñÀ» Àü»êÈ­ ´ÜÃþ ÃÔ¿µ¿¡ ÀÇÇØ 3Â÷¿ø ¿µ»óÈ­ÇÑ À¯ÇÑ ¿ä¼Ò ¸ðµ¨ »ó¿¡¼­ ¾Ë¾Æº¸°íÀÚ ÇÏ¿´´Ù. ÇÇÁú°ñ Àý´Ü¼úÀÇ ½ÃÇà ¿©ºÎ¿Í °íÁ¤¿ø, ÈûÀÇ ÀÛ¿ëÁ¡À» °¢±â ´Þ¸® ¼³Á¤ÇÏ¿© 8°³ÀÇ ½ÇÇ豺À» ±¸¼ºÇÏ¿© ºñ±³ÇÏ¿´´Ù. Åë»óÀûÀÎ T-loopÀ» ÀÌ¿ëÇÏ¿© °ø°£Æó¼â¸¦ ÇÏ´Â °æ¿ì ÀüÄ¡ºÎ´Â ÈÄÇϹæÀ¸·Î °æ»çÀ̵¿ ÇÏ¿´À¸¸ç, ±¸Ä¡ºÎ¿¡¼­µµ ¾à°£ Àü¹æ À̵¿ÇÏ¿´´Ù. ÇÇÁú°ñ Àý´Ü¼úÀ» µ¿¹ÝÇÏ¿© ÀüÄ¡ºÎ¸¦ °ßÀÎÇÑ °æ¿ì, ÀüÄ¡ºÎ °ñÆí¿¡¼­ÀÇ ÀÀ·Â ºÐÆ÷°¡ Àü¹ÝÀûÀ¸·Î ³Ð°Ô ºÐÆ÷µÇ¾úÀ¸¸ç, ÀüÄ¡ºÎ °æ»çÀÇ Á¤µµ°¡ ÀûÀº ¹Ý¸é¿¡ º¯À§·®Àº ÈξÀ ´õ ¸¹¾Ò´Ù. ÇùÃø¿¡¼­ÀÇ °ßÀÎ ½Ã »ó¾Ç ÇùÃø¿¡ ½Ä¸³µÈ ¹Ì´Ï ÀÓÇ÷£Æ®¿Í °ßÄ¡ Power arm°£¿¡ °ßÀηÂÀ» °¡ÇÑ °æ¿ì°¡ ¹Ì´Ï ÀÓÇ÷£Æ®·Î °íÁ¤¿øÀÌ °­È­µÈ Á¦2¼Ò±¸Ä¡¿Í °ßÄ¡ ºê¶óÄÏ °£¿¡ °ßÀηÂÀ» °¡ÇÑ °æ¿ìº¸´Ù ÀüÄ¡ºÎÀÇ ÈÄÇÏ¹æ °æ»ç Á¤µµ°¡ Àû¾ú´Ù. ±¸°³Ãø¿¡¼­ Powerarm¿¡ ´ëÇÑ °ßÀÎ ½Ã Á¤Áß±¸°³ºÀÇÕ ºÎÀ§¿¡ ½Ä¸³ÇÑ ¹Ì´Ï ÀÓÇ÷£Æ®·ÎºÎÅÍ °ßÀηÂÀ» °¡ÇÑ °æ¿ì°¡ »ó¾Ç Á¦1, 2´ë±¸Ä¡ °£ ±¸°³¸é¿¡ ½Ä¸³µÈ ¹Ì´Ï ÀÓÇ÷£Æ®·ÎºÎÅÍ °ßÀηÂÀ» °¡ÇÑ °æ¿ìº¸´Ù ÀüÄ¡ºÎÀÇ ÈÄÇÏ¹æ °æ»ç Á¤µµ°¡ ÄÇ´Ù. ÀÌ·¯ÇÑ °á°ú·Î½á Ä¡¾ÆÀ̵¿ ½Ã ÇÇÁú°ñ Àý´Ü¼úÀÇ È¿°ú¿Í ÀúÇ×Á߽ɿ¡ ´ëÇÑ ±³Á¤·Â º¤ÅÍ Á¶Á¤ÀÇ Àǹ̸¦ È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù.

Objective: The purpose of this study was to evaluate the displacement pattern and the stress distribution shown on a finite element model 3-D visualization of a dry human skull using CT during the retraction of upper anterior teeth.
Methods: Experimental groups were differentiated into 8 groups according to corticotomy, anchorage (buccal: mini implant between the maxillary second premolar and first molar and second premolar reinforced with a mini Implant, palatal: mini implant between the maxillary first molar and second molar and mini implant on the midpalatal suture) and force application point (use of a power arm or not).

Results: In cases where anterior teeth were retracted by a conventional T-loop arch wire, the anterior teeth tipped more postero-inferiorly and the posterior teeth moved slightly in a mesial direction. In cases where anterior teeth were retracted with corticotomy, the stress at the anterior bone segment was distributed widely and showed a smaller degree of tipping movement of the anterior teeth, but with a greater amount of displacement. In cases where anterior teeth were retracted from the buccal side with force applied to the mini implant placed between the maxillary second premolar and the first molar to the canine power arm, it showed that a smaller degree of tipping movement was generated than when force was applied to the second premolar reinforced with a mini implant from the canine bracket. In cases where anterior teeth were retracted from the palatal side with force applied to the mini implant on the midpalatal suture, it resulted in a greater degree of tipping movement than when force was applied to the mini implant between the maxillary first and second molars.

Conclusion: The results of this study verifies the effects of corticotomies and the effects of controlling orthodontic force vectors during tooth movement.

Å°¿öµå

ÀüÄ¡ºÎ ÈÄ¹æ °ßÀÎ;»ïÂ÷¿ø À¯ÇÑ ¿ä¼Ò¹ý;ÀÀ·Â ºÐÆ÷;ÇÇÁú°ñ Àý´Ü¼ú
Retraction of anterior teeth;3-D finite element analysis;Stress distribution;Corticotomy

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

  

µîÀçÀú³Î Á¤º¸

SCI(E)
KCI
KoreaMed